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Weather and Conflicts in Afghanistan

By MONIR ELIAS BOUNADI∗

Abstract

I combine high-resolution data on temperature and precipitation with georefer-

enced data on conflict events to explore the link between local weather variations

and conflict incidence for all districts of Afghanistan between July 2005 and De-

cember 2016. By utilizing exogenous interannual variation in daily temperature

and precipitation within district-months, I find that exchanging colder for warmer

days tends to increase the likelihood of conflict and that precipitation does not

drive the occurrence of conflict. I provide suggestive evidence that temperature

shocks to opium production do not explain the observed temperature-conflict link.
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1 Introduction

The weather of Afghanistan has grown harsher since the 20th century. The

steady increase in temperature and intensification of local droughts and floods—

changes predicted to continue under global climate change—have shaken the

region, degrading infrastructure and causing adaptive challenges for farmers

(NEPA and UNEP, 2015). Meanwhile conflicts plague Afghanistan. Recent data

from the Uppsala Conflict Data Program (UCDP) indicate that the number of

conflict events rose from about 800 to 1,900 between 2006 and 2016. The trend

in harsher weather conditions combined with the escalation of conflicts raises

the fundamental question of a causal relationship.

Much of the violence in Afghanistan is likely driven by ethnolinguistic in-

tolerance and competition for scarce resources.2 As such, the weather is not

the sole conflict driver. Still, the weather acts as an ever-present support fac-

tor that under certain circumstances raises the likelihood of a violent incident.

A case of relevance is the Afghan 1969-1972 drought crisis. The failure of the

last king to respond to the crisis weakened the support for the monarch and

opened up for the successful July 1973 coup d’etat (Ruttig, 2013). In the ab-

sence of droughts, there would be no room for such a failure, and the conflict

history of Afghanistan would perhaps have looked different.

The present thesis explores the impact of weather variations on conflicts

for all districts of Afghanistan (i.e., second administrative-level regions) be-

tween July 2005 and December 2016. The empirical analysis is based on a com-

2In a series of interviews in Kabul in 2017 by the Afghanistan Research and Evaluation

Unit (AREU, 2017), interviewees were found to blame the current Kuchi-Hazara conflict on the

blocking by local Hazara militias of Kuchi migration routes. At the same time, Hazara farmers

seem to view these measures as justified by recent experiences of crop destruction connected

to Kuchi migration efforts.
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bination of monthly location-specific information on conflict events from the

UCDP with an original weather dataset. The latter include high-resolution

daily temperature and precipitation data from the National Aeronautics and

Space Administration (NASA) Goddard Space Flight Center (GSFC) and the

Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS).

My use of a conservative panel data fixed effects model enables causal iden-

tification. I argue that by including district-month fixed effects in all specifica-

tions, I can utilize exogenous interannual variation in daily temperature and

precipitation within district-months. I find that exchanging colder for warmer

days tends to increase the likelihood of a conflict and that precipitation does

not drive the occurrence of conflict. The observed temperature-conflict link de-

scribes a net effect of temperature variations on conflict incidence and is consis-

tent with several theories. Returning to a dominant topic in empirical studies

on conflicts in Afghanistan, I provide suggestive evidence that temperature

shocks to opium production do not explain the observed temperature-conflict

link.

To the best of my knowledge, this study adds to the literature in three ways.

First, it is the first subnational fixed effects study on the weather-conflict rela-

tionship in Afghanistan.3 Second, it is first to employ such a high spatial res-

olution to study the impact of high-frequency monthly variation in weather

on intergroup conflicts. Third, it provides suggestive evidence on the role of

opium production in explaining the connection between variation in tempera-

3There is one study on the weather-conflict link in Afghanistan by Carter and Veale (2013).

They use an event count model. Their exclusion of fixed effects (including unobservable char-

acteristics such as farmland values) makes it doubtful that they are exploiting exogenous vari-

ation in their weather variables. Furthermore, they include a host of controls that are poten-

tially endogenous to weather variation (e.g., opium cultivation), so that the coefficients on their

weather variables are potentially biased.
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ture and conflicts.

The remainder of this thesis is organized as follows. Section 2 identifies

main findings and econometric insights from the existing literature. It further

contains a summary of mechanisms that make the weather-conflict link ex-ante

probable and a sketch of the weather risk profile of Afghanistan. Section 3

presents the data. Section 4 outlines the empirical strategy. Then Section 5

displays the baseline results, various sensitivity analyses and an analysis of the

role of opium production in explaining the observed temperature-conflict link.

Section 6 concludes with a discussion.

2 Existing Literature and Conceptual Framework

I here summarize the main findings and econometric insights from recent stud-

ies. For a comprehensive review of the general effects of weather variations and

their impact on conflicts, the reader is referred to Dell, Jones and Olken (2014)

and Burke, Hsiang and Miguel (2015).

Many studies on the weather-conflict relationship have used weather vari-

ation as an instrument for non-climatic causal factors of conflicts. For example,

Miguel, Satyanath and Sergenti (2004) use rainfall variation as an instrument

for economic growth and Maystadt and Ecker (2014) use a temperature-based

drought indicator as an instrument for livestock prices. However, the key iden-

tifying assumption that the instrumental variable only affects conflicts through

a particular intermediate variable (i.e., the exclusion restriction) is unlikely to

hold in general as climatic events affect other likely causes of conflicts. These

causes include human health, agricultural income, demographics and psycho-

logical attitudes towards violence (Baysan et al., 2015; Carleton and Hsiang,

2016; Dell, Jones and Olken, 2014).
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That the effect of climate on conflicts tends to operate through a plethora of

channels has encouraged a shift towards reduced-form analyses. On the one

hand, reduced-form estimates seldom pin down any specific mechanism that

explains the weather-conflict link. On the other hand, no exclusion restriction

need to be satisfied, and we identify the net effect of weather variations per se

on conflicts. This net effect is causal under the weaker assumption that weather

variations are (unconfounded) random draws from a climate distribution (after

controlling for a broad set of covariates).4

Most reduced-form estimates from recent studies rely on panel data fixed

effects approaches. These approaches tend to have robust identification proper-

ties as the inclusion of panel-specific and time-varying fixed effects allow one

to absorb unobserved fixed spatial characteristics and time-varying regional

shocks. Although the inclusion of fixed effects eliminates the need to explicitly

control for all confounders (as in a cross-sectional regression), the use of time

series variation in the panel data means that we only identify causal effects at

specific frequencies. Thus, though short-run time series variation may identify

effects of high-frequency weather variations this does not necessarily inform

the debate on the impacts of climate change on conflicts.5

Given a panel data fixed effects model additional methodological challenges

abound. One concerns the time dependence of conflicts on the weather. Cli-

matic events can displace events in time such as delaying the ending of a con-

flict event. They can also have persistent effects. For example, Carleton (2017)

find that the impact of growing season temperature on suicide rates last for

about five years. Similar dynamics are present spatially. For just as local con-

4Note that I implicitly think of weather variations as short-run realizations from a long-run

climate distribution.
5Hsiang (2016) derives sufficient (but not necessary) econometric conditions on when mea-

sured weather variations identify causal effects of stochastic perturbations to the climate.
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flict events spill over temporally they may spill over to neighboring locations

(Harari and La Ferrara, 2017).

Also, there is the task to specify the correct dose-response relationship be-

tween weather and conflicts. Early analyses used affine transformations of

weather variables or climate-based indicators. However, these seem insuffi-

cient characterization of the weather-conflict link. Because at least across some

regions, the relationship appears nonlinear (Hsiang, Burke and Miguel, 2013).

Of importance has also been to identify the correct set of fixed effects. Fail-

ure to include a fixed effect can generate significant effects that are the results of

simple coincident time series variation. This failure is empirically illustrated by

Couttenier and Soubeyran (2014) who find that adding year to country fixed ef-

fects (that, among other things, control for worldwide climate changes) reduces

the effect of temperature on civil war by about 2/3. However, this should not

encourage us to include fixed effects whenever possible. Inevitable measure-

ment error in weather variables causes attenuation bias of our estimators, and

this attenuation bias can be amplified when adding fixed effects (Fisher et al.,

2012; Wansbeek and Koning, 1991).

These methodological concerns explain the broad set of different approaches

in the weather-conflict literature. Adding the use of different datasets to these

concerns make it hard to summarize the evidence on the weather-conflict link.

To examine the weather-conflict link more systematically, Burke, Hsiang and

Miguel (2015) conduct a meta-analysis of 55 fixed effects studies on the weather-

conflict relationship. These studies cover a broad spectrum of violence includ-

ing both interpersonal and intergroup violence (e.g., violent crime and civil

conflicts). Meta-analysing these studies in a hierarchical Bayesian framework,

they find that contemporaneous temperature has the most substantial mean ef-

fect on conflict. Specifically, they find that each within-location standard devia-
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tion increase in contemporaneous temperature induces a 2.4 percent increase in

interpersonal conflicts and an 11.3 percent increase in intergroup conflicts, rel-

ative to the baseline average probability of conflict (posterior p-value < 0.001).

The contemporaneous effect of precipitation on interpersonal and intergroup

conflict is only marginally significant (posterior p-value < 0.100).

As discussed in Burke, Hsiang and Miguel (2015), the rich weather-conflict

literature suggests several channels that could explain this empirically robust

weather-conflict link. First, there is the productivity channel. Extreme weather

events such as long periods of droughts and heavy rainfall can lower produc-

tivity and wages within the agricultural sector, causing a worsening of current

living standards. These adverse shocks can spur conflicts by reducing the op-

portunity cost of conflict by more than it alters the value of peace, as in a model

by Chassang and Padro-i Miquel (2009). Second, there is the migration channel.

If, e.g., urban labor markets cannot absorb rural climate immigrants, per capita

income may decline and, in turn, induce a rise in conflicts. Also, weather-

induced migration can strengthen ethnolinguistic fragmentation and increase

ethnic violence. Third, there is the physical geography channel. This channel is

active when weather variations cause changes in the physical geography that

raise or lower the probability of a successful attack. These changes include

generated constraints on ground operations that depend upon logistics and

intelligence gathering. Finally, there is the psychological channel. Events such

as heat waves can alter the physical and psychological stress and, as a result,

affect the psychological cost of acting on intents to act violently.6

6For productivity, see Maystadt and Ecker (2014); for migration and the comment regarding

ethnolinguistic fragmentation, see Bohra-Mishra, Oppenheimer and Hsiang (2014) and Ray

and Esteban (2017); for physical geography, see the discussions on flood destruction of road

networks in Miguel, Satyanath and Sergenti (2004) and on the role of physical geography in

Afghanistan in Carter and Veale (2013); and for psychological, see Baysan et al. (2015).
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It is possible that all these channels are present in Afghanistan. Neverthe-

less, it is valuable to delineate the weather-conflict risk profile of Afghanistan

(NEPA and UNEP, 2015; NEPA, UNEP and WFP, 2016). The most important

characteristic of this profile seems to be long periods of droughts and increased

temperature. Such events can increase the internal displacement in the re-

gion and, in turn, exacerbate existing tensions between ethnolinguistic groups

in a country with more than a dozen different major ethnolinguistic groups

(e.g., ethnic violence between the Shia Muslim group Hazaras and the mili-

tantly Sunni Pashtun Taleban). High regional tensions that result from extreme

weather events can further deepen the competition for the use of scarce pro-

ductive rangelands and exacerbate existing nomad-farmer conflicts, especially

as about 45 percent of the total land mass is under permanent pasture (NEPA,

UNEP and WFP, 2016).

The risk factor most studied in empirical conflict studies on Afghanistan

concerns how changes in the Afghan opium economy drive conflicts (Bove and

Elia, 2013; Gehring, Langlotz and Kienberger, 2017; Lind, Moene and Willum-

sen, 2014). For suppose long periods of droughts induce farmers to grow more

of the opium poppy, a drought-resistant crop. Then if the Taleban use revenues

from opium production to finance insurgencies, we expect increased opium

production to raise conflict levels.7 Gehring, Langlotz and Kienberger (2017)

provide some evidence on this. Instrumenting indicative district-level opium

cultivation with a drought index they find an adverse effect of opium cultiva-

tion last year on battle-related deaths this year. However, if droughts change

other aspects associated with conflicts, their estimates are biased (as the exclu-

sion restriction does not hold).

7According to the UNODC World Drug Report 2017, up to 85 percent of opium poppy

cultivation in Afghanistan was in Taleban territory during 2016 (UNODC, 2017).
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3 Data

3.1 Data Description

The structure of the dataset is a georeferenced balanced panel across 398 dis-

tricts in 34 provinces of Afghanistan from July 2005 to December 2016. My unit

of analysis is a district-year-month. The administrative boundaries are fixed

to those recognized by the Afghan Ministry of the Interior in June 2005. This

fixation ensures that my unit of analysis is not endogenous to conflict events

during the sample period.8

In the next section, I study how weather variations affects the probability

that a conflict occurs in a given district during a given year-month. This sec-

tion provides information about the main datasets and variables. Additional

data details appear in Appendix A.

Conflict Events.—Monthly information on conflict events at the district-level

comes from the UCDP Georeferenced Event Data (GED). The primary variable

8The number of unofficial and temporary districts is continually changing in Afghanistan.

To date, the number of districts is above 400. If political violence drives administrative bound-

ary changes, or vice verse (Bazzi and Gudgeon, 2016), fixing the administrative boundaries

to a year-month contained in the sample period would make my unit of analysis endogenous

to conflict events. Compare with Berman et al. (2017) who use the PRIO-GRID dataset. This

dataset defines a spatiotemporal grid structure of 0.5◦ × 0.5◦ cells that are by construction un-

related to administrative boundaries and hence not endogenous to conflict events. However,

a similar setup is unfeasible in this case. The reason is that a grid structure that covers all dis-

tricts of Afghanistan would roughly be a grid of 0.05◦ × 0.05◦ cells. It is impossible to match

these grid cells with the UCDP measure of conflict events as these are not coded at such a fine-

grained level. Furthermore, for district assignment of conflict events, I had to ensure that the

UCDP acknowledge the particular division of administrative regions I use, and this seems to

be the case from July 2005 to December 2016 (see Appendix A.2).
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is (the best estimate of) battle-related deaths resulting from an event.9 An event

is an incident that meets the following four main criteria (Croicu and Sund-

berg, 2017, pp. 9–10, 15). First, the incident must involve armed force by “an

organi[z]ed actor against another organized actor, or against civilians”. Sec-

ond, the incident must result in at least one death “relating to either combat

between warring parties or violence against civilians”. Third, it must be pos-

sible to represent the incident as involving “two conflicting primary parties or

party killing unarmed civilians”. Four, the incident must pass the threshold of

25 annual deaths, counting from 1989 to 2016.

The consequences of these restrictions for my results are unknown but is not

a concern as there is no comparable dataset of similar quality.10 Sundberg and

Melander (2013) discuss the limitations of the threshold of 25 annual deaths for

inclusion in the UCDP GED. The take-home message is that the strict adher-

ence to the 25 annual deaths threshold obscures minor conflicts but captures

9The other measures of the number of battle-related deaths in the UCDP GED are the lowest

and highest reliable estimates of ditto. The lowest and highest reliable estimate coincides with

the best for around 95.1 and 84.3 percent of the events, respectively. I note that the baseline

results in Subsection 5.1 are barely affected by the chosen measure (not shown).
10That there is no comparable dataset of similar quality comes from comparing the UCDP

GED to two other comparable datasets. First, conflict data from the Global Database of Events,

Language, and Tone (GDELT) Project at https://www.gdeltproject.org/data.html/. The

GDELT Project data contain information on conflict events from world local media in 100 dif-

ferent languages. In contrast, the UCDP GED is primarily derived from a large number of

sources from Factiva and consequently contain almost exclusively English material. However,

the GDELT Project dataset does not record events at the district-level. The second comparable

dataset is version 1 of the Armed Conflict Location & Event Data Project (ACLED) dataset at

https://www.acleddata.com/data/. The ACLED dataset is as precise as the UCDP GED and

further contain conflict events that do not meet the threshold of 25 annual deaths (i.e., minor

conflicts). However, version 1 of the ACLED dataset is by construction an incomplete pilot

dataset and contain no information on conflict events after 2010.
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sensible definitions of concepts of major (i.e., high intensity) armed conflicts.

That is, the UCDP GED is an unrepresentative sample of all conflict events

in Afghanistan but is more likely a representative sample of all major conflict

events in Afghanistan.

The UCDP GED was spatially joined to the 398 Afghan districts and re-

stricted to the period from July 2005 to December 2016. The number of con-

flict events is 19,846. For the empirical analysis, I restrict the dataset to events

known to occur at the district-level for no more than 30 days. This restriction

drops 5,378 events. I also drop five events that occurred at the border between

two districts and that has no district name assigned. Out of 14,468 remaining

events (about 72.9 percent of the full sample), 110 spans two months. Battle-

related deaths related to these 110 events are not assigned to both months but

are instead assigned to the second month when the event ends.11

Temperature and Precipitation.—Daily temperature data come from the Asia

Land Information System (LIS) Framework developed at the Hydrological Sci-

ences Laboratory at the NASA GSFC (Kumar et al., 2006). The core of the

NASA LIS Framework consists of a land surface model and tools for high-

performance computing. Input data include satellite and ground-based obser-

vational data (e.g., data on topography, vegetation, snowpack and soil mois-

ture). The final product is a series of variables on land surface states and fluxes.

Among these, the sole variable of interest is the daily average land surface tem-

perature in Kelvin over all of Central Asia at 0.01◦ resolution (approximately

1.11 km at the equator) for each day between July 2005 to December 2016.

For each day and district of Afghanistan, I compute an area-weighted mea-

11The baseline results in Subsection 5.1 are essentially unchanged if these events are dropped

or if battle-related deaths are assigned to the first month when the event starts (not shown).
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sure of land surface temperature, namely the mean daily land surface temper-

ature converted into ◦C across pixels whose centroids falls within the district’s

boundary.12

Daily precipitation data is the CHIRPS. The dataset contains information on

daily precipitation over a quasi-global grid at 0.05◦ resolution (approximately

5.55 km at the equator) from 1981 to near-present. Data was initially gener-

ated using interpolation techniques incorporating satellite imagery with in-situ

station data (Funk et al., 2015). The dataset contains information on precipita-

tion in millimeters (mm) over 0.05◦ × 0.05◦ longitude and latitude cells across

all 398 districts of Afghanistan for each day between July 2005 and December

2016. For each day and district of Afghanistan, I compute the mean daily (mm)

precipitation across pixels whose centroids falls within the district’s boundary.

Among the principal types of weather data, ground station data is believed

to most reliably measure weather for the areas where stations are located (Dell,

Jones and Olken, 2014). However, entry and exit of weather observations in

conflict-ridden countries such as Afghanistan could cause the measured quan-

tities to be endogenous to conflict events (Auffhammer et al., 2013). I believe

that the interpolation and reanalysis data on temperature and precipitation are

exempt from this endogeneity issue. The reason is that these are primarily

products of interpolation methods and climate data models. By construction,

these methods are unrelated to conflicts in Afghanistan. Therefore, as these

methods dominate data generation, the endogeneity of the input data (e.g.,

quantities measured at the weather stations) unlikely translate into endogene-

ity of the generated temperature and precipitation data. Nonetheless, the meth-

ods and models used simplify the physical relationship between climatic ele-

ments and introduce measurement error into my regression estimates. Though

12Area-weighting is discussed in Appendix A.3.
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these measurement errors decrease the efficiency of the regression estimators,

they can be treated as statistical noise orthogonal to conflict events.

Opium Data.—I construct an environmental opium suitability index based

on a method by Kienberger et al. (2017). Each input variable used to construct

the index is a characteristic of the environment and consequently exogenous

to conflicts. The index varies from 0 (not suitable) to 1 (very suitable) and is a

district-level measure of the ability to meet the abiotic environmental require-

ments of the opium poppy (Papaver somniferum). I further collect yearly indica-

tive district-level data on opium cultivation from 2005 to 2016, and information

on the period for opium planting across the 34 provinces of Afghanistan, from

the United Nations Office on Drugs and Crime (UNODC).

Historically opium has been a dominant source of income for Afghan farm-

ers. During 2006 to 2008, the size of the Afgan opium economy accounted for

about 40 percent of licit GDP (UNODC, 2008). The summary statistic has since

then fallen almost linearly to around 5 percent in 2016 (UNODC, 2016).

3.2 Descriptive Statistics

Table 1 presents descriptive statistics on weather and conflicts for all 398 dis-

tricts of Afghanistan from July 2005 to December 2016. Battle-related deaths

are measured at the district-year-month-level. I observe an average number

of 1.41 battle-related deaths. Conditioning on the presence of a battle-related

death the average is about 9.57. Thus, during the sample period around 77,500

have died in (major) conflict events. The average probability of conflict mea-

sured as the presence of a battle-related death is 15 percent. Investigating the

characteristics of the conflict events that make up the previous figures, I find

that almost all involve the Government of Afghanistan and the Taleban as the
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two primary conflicting parties. Remaining conflict events involve the Taleban

killing unarmed civilians and, since January 2016, conflicts between the Gov-

ernment of Afghanistan and the Islamic State (IS) (of Iraq and Syria).

TABLE 1—DESCRIPTIVE STATISTICS: WEATHER AND CONFLICTS

SD

Observations Mean Overall Within

Battle-related deaths†

All 54,924 1.41 8.29 7.55

If > 0 8,096 9.57 19.71 18.05

1(Battle-related deaths > 0)† 54,924 0.15 0.35 0.30

Conflict Events†

All 14,468

Government of Afghanistan vs. Taleban 13,246

Taleban vs. Civilians 646

Government of Afghanistan vs. IS 263

Daily Temperature (◦C)‡ 1,817,666 13.28 13.24 3.64

Daily Precipitation (mm)‡ 1,817,666 0.96 3.20 3.04

Notes: The summary statistic Overall SD stands for the overall standard deviation of the cor-

responding variable. The summary statistic Within SD stands for the overall standard devi-

ation of the corresponding variable after removing district-month fixed effects. The variable

1(Battle-related deaths > 0) is 1 if there is at least one battle-related death, and 0 otherwise.

The acronym IS stands for Islamic State (of Iraq and Syria). The sample period is July 2005 to Decem-

ber 2016. All 398 districts are included in the sample. Numbers are correct to two decimal places.
†Measured at district-year-month-level. ‡Measured at district-year-month-day-level.

Source: Author’s calculations based on data from the CHIRPS, NASA GSFC and UCDP.
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Temperature and precipitation are measured at the district-year-month-day-

level. The total number of observations is about 1.8 million. The average daily

temperature is 13.28 ◦C and the average daily precipitation is 0.96 mm. Thus,

on average during the sample period, a day in Afghanistan is cool and dry.

I also tabulate the overall and within standard deviation. The within stan-

dard deviation represents the standard deviation within district-months and is

a summary statistic of interannual within district-month variation of a variable.

Interannual within district-month variation is the variation I use as part of my

identification strategy that I present in the next section. Consider the standard

deviations of the weather variables. I find that there is no substantial difference

in overall and within standard deviation in daily precipitation. However, the

within standard deviation in temperature is about 1/4 of the overall standard

deviation. Thus, while there is substantial daily variation in temperature across

Afghanistan over time, interannual within district-month variation roughly oc-

cur in a small ±3.64 ◦C band.

Figure 1 shows that the overall and within-province variation in the opium

suitability index is noticeable. The index is 0 (1) in the district in which it is

least (most) suitable to grow opium poppies, and between 0 and 1 for all other

districts. I expect the density of opium production to correlate positively with

the index. For 134 out of 398 districts that have never cultivated opium during

the sample period, I expect planned opium cultivation to increase with the in-

dex. Regarding the temporal variation, 10 out of 34 provinces cultivate opium

during spring (most in the Northern and Central regions), 14 during Autumn

(most in the Eastern and Southern regions), and the remaining 10 during spring

and autumn (not concentrated to any region).
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4 Empirical Strategy

I begin by describing the baseline specification that I use to estimate the weather-

conflict relationship. Then I outline my baseline standard error correction method

used for statistical inference.

Baseline Specification.—My baseline specification utilizes plausibly random

interannual weather variation in district-month-specific weather distributions.

Mathematically I employ ordinary least squares (OLS) to estimate the follow-

ing linear probability model:

Cdt =
1

∑
l=0

(
∑

i
βl

iT
i
d,t−l + ∑

j
γl

jP
j
d,t−l

)
+ δdm + πpt + qdm(y) + εdt, (1)

where d denotes the district, p the province, m the month (January to De-

cember), y the year and t the year-month. The dependent variable Cdt—conflict

incidence for short—is my measure of the presence of a conflict. Specifically,

Cdt is a binary variable equal to 1 if there is at least one battle-related death in

district d year-month t, and 0 otherwise.

The variables Ti
dt and Pj

dt are measures of (land surface) temperature and

precipitation. Specifically, Ti
dt and Pj

dt denotes the number of days tempera-

ture and precipitation falls in bin i and j in district d year-month t, respectively.

These temperature- and precipitation-day bins are my explanatory variables

of interest and were constructed to approximate the potentially nonlinear rela-

tionship between weather and conflicts.13

13If the weather-conflict relationship is nonlinear, a linear parametric function of weather

bins as in (1) approximate the nonlinear relationship. See Appendix B for a detailed discussion.

Also, see Barreca et al. (2016) for a similar methodology applied to temperature and mortality

in the United States of America.
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To capture the exposure to the full distribution of temperature and precipi-

tation I define the temperature- and precipitation-day bins as follows. For tem-

perature I use 2 extreme bins from the minimum value (about −41 ◦C) to −20
◦C and from 40 ◦C to the maximum value (about 45 ◦C). Then 12 bins of length

5 ◦C from −20 ◦C to 40 ◦C are defined. For precipitation, I follow literature in

hydrometeorology and classify bins into dry-day bins that cover days with less

than 1 mm precipitation and wet-day bins that cover days with at least 1 mm

precipitation. I define five dry-day bins of length 0.2 mm, seven wet-day bins

of length 2 mm from 1 mm to 15 mm and one bin from 15 mm to the maxi-

mum value (about 117 mm). To avoid perfect multicollinearity one bin has to

be omitted for both temperature and precipitation.14 I omit a bin if it contains

the mean temperature or precipitation across all observations. Equivalently, I

omit the [10, 15) ◦C and [0.8, 1) mm bin. Figure 2 illustrates the distribution of

temperature and precipitation across these baseline bins.

To control for any possible direct effects that weather variations in prior

year-months might have on conflict incidence in the current year-month, I in-

clude the first order lags Ti
d,t−1 and Pj

d,t−1. These lags are interesting in them-

selves, but also control for potential serial correlation in weather and possible

delayed effects of weather shocks on current conflict incidence that if ignored

could make my estimators inconsistent (Burke, Hsiang and Miguel, 2015).

The parameters of interest are the coefficients βl
i and γl

j on Ti
d,t−l and Pj

d,t−l.

These are to be interpreted as the contemporaneous or delayed effect (l = 0

or 1, respectively) of exchanging one day in the omitted bin for a day in the

bin specified by the sub-index. For example, β0
[25,30) ◦C is the contemporane-

ous effect on conflict incidence from increasing the monthly count of days in

14All temperature- or precipitation-day bins in a given month sum to the number of days in

that month.
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FIGURE 2. BASELINE TEMPERATURE- AND PRECIPITATION-DAY BINS

Notes: The figure shows the average distribution of daily average temperature and

precipitation across 14 temperature-day bins (left panel) and 13 precipitation-day bins (right

panel). Each bar represents the average number of days per year-month in each temperature

or precipitation category across all 398 districts of Afghanistan over the sample period July

2005 to December 2016. Minimum daily temperature is about −41 ◦C, and maximum daily

temperature is about 45 ◦C. Maximum daily precipitation is about 117 mm. See the text for

more details.

Source: Author’s calculations based on data from the CHIRPS and NASA GSFC.
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the [25, 30) ◦C bin by one, which implicitly requires removing a day from the

omitted bin [10, 15) ◦C.15

My focus on two rather than one weather variable accounts for the corre-

lation of conflict-inducing weather variables. For example, Auffhammer et al.

(2013) find a negative correlation between annual temperature and precipita-

tion in hot areas where more precipitation and the associated evaporation cools

the temperature level.16 Since it is ex-ante unclear if temperature, precipitation

or both affect conflict incidence, I include both.17

The baseline specification includes a full set of district-month fixed effects

δdm and province-year-month fixed effects πpt. The district-month fixed effects

ensure that my parameters of interest are identified from interannual varia-

tion in district-month-specific weather distributions. The province-year-month

fixed effects nonparametrically filter out shocks at the provincial level across

all time periods. To exemplify the resulting variation I am exploiting, consider

the Kabul District of the Kabul Province. For this district, the specification ex-

ploits interannual variation in a specific month (e.g., January) after controlling

for shocks to weather and conflict incidence at the province-year-month-level

15To find all relevant comparisons from an interpretative point of view let Ξl(q, r; ξ) ≡ ξ l
q −

ξ l
r, where ξ is β or γ. Then, e.g., Ξ0(q, r; β) is the contemporaneous effect on conflict incidence

from exchanging one day in temperature-day bin q with a day in temperature-day bin r. Thus,

for, e.g., 14 temperature-day bins there are (14
2 ) = 91 relevant comparisons for each lag order l.

16The sample Pearson’s correlation coefficient of daily temperature and precipitation is about

−0.15 in my sample and is significant at the 0.1 percent α-level.
17There may be other weather variables that affect conflicts such as humidity, evapotran-

spiration and snow cover. However, since most of these are response variables that react to

changes in temperature and precipitation (e.g., water tend to vaporize, and snow melt, at

higher temperatures) these are so-called bad controls. I, therefore, accept the working assump-

tion that temperature and precipitation are most probably sufficient statistics for capturing the

weather-conflict relationship and view them as broad climatic driver variables.
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(e.g., shocks occurring in the Kabul Province in January 2006 to January 2016).18

Econometrically the importance of the fixed effects also stems from their

ability to nonparametrically control for omitted determinants of conflict inci-

dence that covaries with weather variations (i.e., omitted variables). First, the

district-month fixed effects account for intraannual district-specific variation

in farmland values (driven by, e.g., irrigation seasonality) that could covary

with weather outcomes and the opportunity cost of engaging in violence (Jia,

2014).19 Second, the province-year-month fixed effects nonparametrically con-

trol for regional shocks such as climate change-induced shifts in the distribu-

tion of extreme weather events that may drive conflict events through, e.g.,

regional price shocks (IPCC, 2014; Maystadt and Ecker, 2014).20 The province-

18The inclusion of the district-month and province-year-month fixed effects implies that the

estimation of (1)—described as a least squares dummy variable model—using OLS yields mul-

tidimensional within estimators of all parameters. To derive the specific within transformation,

view each variable zdt as zdpmy. Then the within transformation z̃dpmy of zdpmy is (Balazsi,

Matyas and Wansbeek, 2018)

z̃dpmy = zdpmy − zdpm· − z·pmy + z·pm·.

This equality algebraically illustrates how (1) utilize district-month specific interannual varia-

tion (first minus second term) after accounting for time-varying provincial shocks (third term).

The last term ensures that transformations of fixed effects are not subtracted twice.
19For the same reason the district-month fixed effects also exclude temperature- and

precipitation-day bins that are never realized within the specific district-month (i.e., zero for

all years).
20Note that I implicitly assume that temperature and precipitation do not entirely explain cli-

mate change-induced shifts. Besides it is important to note that since the province subgroup is

foremost a political rather than an agroclimatic zone I implicitly assume that differing weather

distributions across provinces capture relevant differences in agroclimatic zones (NEPA, UNEP

and WFP, 2016). However, if climate change induces district-specific stochastic perturbations

of the number of extreme events, this will not be picked up by the province-year-month fixed

effects. This is partially controlled for by the district-month-specific yearly trends qdm(y).
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year-month fixed effects further control for conflict events spilling over to one

district from nearby districts, given that they are located in the same province.21

Finally, I control for district-month-specific smooth quadratic yearly trends

qdm(y) that semi-parametrically control for differential trends in conflict inci-

dence driven by time-varying unobservables (e.g., district-level climate change-

induced trends in conflict incidence and extreme weather events). The trend

component also removes potential spurious regression phenomena generated

by interannual coincidental time series variation (e.g., increasing media cover-

age of conflict events combined with trends in extreme weather events). Though

there are potential determinants of conflict incidence that I could control for,

these are themselves outcomes of weather variations and would, if included,

bias the estimated coefficients on the temperature- and precipitation-day bins.

These potentially endogenous controls were intentionally omitted.22

Few potential confounders seem to remain after including such a rich set of

fixed effects. I, therefore, believe that my identifying assumption is satisfied.

In other words, that the variation in daily temperature and precipitation is as if

interannually randomly assigned across district-months.23

21More subtle is that the province-year-month fixed effects also filter out trends in the report-

ing of violent conflicts, or the presence of some systematically biased over-reporting of conflict

events, across provinces. However, I think such trends are unrelated to my weather variables.
22Examples of potentially endogenous controls are several in the Afghan context: The market

price for wheat or opium (Gehring, Langlotz and Kienberger, 2017); the local snow depth water

equivalent that determines seasonal variation in irrigation capacity (NEPA, UNEP and WFP,

2016); and aid inflows induced by extreme weather events (Zürcher, 2017). If any of these

are outcomes of weather variations and included in the baseline specification, the estimated

coefficients on the temperature- and precipitation-day bins would be conditional on a given

level of a control variable. Including these so-called bad controls would, however, invalidate a

causal interpretation of the estimators (Angrist and Pischke, 2008, Subsection 2.2.3).
23Though I argue that my fixed effects are needed to ensure exogenous weather variation,

they can induce overfitting and exacerbate attenuation bias by reducing the signal-to-noise ra-
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There is one additional issue worth mentioning. It concerns the fact that

since my baseline specification is a linear probability model, it can predict val-

ues of conflict incidence outside the strict unit interval of a probability. If there

is a nonzero probability of predicting outside the unit interval, then the esti-

mated parameters are not realizations from consistent estimators (Horrace and

Oaxaca, 2006). Since there are predicted values outside the unit interval for all

of my estimated linear probability models (not shown), my estimated coeffi-

cients are biased.24

However, this problem is unsolvable as my multidimensional fixed effects

make standard solutions infeasible. Specifically, estimating a logit or probit

model lead to an incidental parameter problem so that parameters become in-

estimable.25 Though this removes my ability to predict more than marginal

changes in temperature and precipitation, the linear probability model for bi-

nary responses is a convenient approximation of the underlying response prob-

ability and a minimum mean squared error linear approximation of the under-

lying conditional expectation function (Angrist and Pischke, 2008; Wooldridge,

2010). Furthermore, even if a logit or probit model would be estimable, there

is no a priori reason to assume that the error term in (1) is well-modeled by the

tio of the weather variables. The extent of overfitting in my baseline specification is illustrated

by the R2-values from regressing each baseline bin on the baseline fixed effects. I find that for

the temperature-day bins, the mean R2 is about 85.26 percent, and for the precipitation-day

bins, the mean R2 is about 53.44 percent.
24For the estimated baseline specification in Section 5.1, about 67.68 percent of the predicted

values are inside the unit interval.
25The incidental parameters problem was highlighted by Neyman and Scott (1948). Here

the problem is that when the number of district-months goes off to infinity in the asymptotic

analysis of the consistency of the estimators, incidental parameters (i.e., district-months) are

inconsistently estimated and further contaminate the common parameters (i.e., the coefficients

on the temperature- and precipitation-day bins). Model-specific solutions exist, but there is no

unified solution (Charbonneau, 2017; Lancaster, 2000).

22



Gaussian or logistic distribution.

Baseline Statistical Inference.—For my baseline specification, I employ a two-

way clustering design and allow the transitory shocks εdt to be serially corre-

lated of unspecified form within districts and spatially correlated of unspeci-

fied form within year-months, as modeled by sandwich estimators of one-way

clustered variance-covariance matrices.26 There are two critical aspects of my

two-way clustering design. First, it accounts for potential serial and spatial cor-

relation in conflict events and my measures of temperature and precipitation.27

This is important since failure to account for serial and spatial correlation of the

error terms can overestimate precision and thereby cause erroneous statistical

inference (Moulton, 1986).

The other aspect is that the size of each cluster dimension (i.e., district and

year-month) must go off to infinity for the cluster-robust variance-covariance

estimator to be consistent. Thus, the suitability of the design depends on the

minimum of the number of districts (398 in the baseline) and the number of

26The key assumption is E(εiεj|xi, xj) = 0 if observation i and j does not lie in the same

district or the same year-month, where xi and xj denote all covariates for observation i and j,

respectively. The two-way cluster-robust variance-covariance matrix estimator (CRVE) V̂ that

hold under this assumption is the sum of the one-way CRVEs for the first and second cluster

dimension, minus the one-way CRVE for the intersection of the two dimensions (Cameron and

Miller, 2015). If V̂ is not positive-semidefinite, I follow Cameron, Gelbach and Miller (2011) and

use the Eigen Decomposition Theorem to construct an alternative CRVE V̂+. The alternative

V̂+ tend to be positive-semidefinite and a suitable alternative to V̂.
27For example, Harari and La Ferrara (2017) use a spatial regression model and finds both

significant serial and spatial correlation in their conflict variable. Furthermore, the precipita-

tion interpolation data may mechanically introduce spatial correlation with measured precip-

itation even if none exist (Dell, Jones and Olken, 2014). Note though that the precipitation

data generated by CHIRPS attempt to reduce this bias by estimating a set of local decorrelation

structures that limit the extent of the spatial correlation in precipitation (Funk et al., 2015).
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year-months (137 in the baseline) (Cameron and Miller, 2015). There is no clear-

cut rule on the exact number of clusters needed. However, current consensus

seems to suggest 50 (Cameron and Miller, 2015), and my minimum baseline

cluster size 137 passes this threshold by almost two-and-a-half.28

5 Results

I now turn to the results. First, I report the baseline results. Second, I check if

the baseline results are sensitive to alternative specifications. Third, I present

suggestive evidence that temperature shocks to opium production do not ex-

plain the observed link between temperature and conflict incidence.

5.1 Baseline Results

Figure 3 displays the weather-conflict relationship obtained by estimating the

baseline specification (1). The red (blue) thick lines approximate the contin-

uous dose-response relationship between conflict incidence and temperature

(precipitation). To be more specific, the thick red (blue) lines mark out the es-

timated impacts on current conflict incidence from exchanging days with tem-

perature (precipitation) levels in the omitted bin to a day with temperature

28There is no theorem to the effect that 50 clusters are enough. However, in the context of a

difference-in-differences specification, Bertrand, Duflo and Mullainathan (2004) find in simu-

lations that Wald tests based on the cluster-robust variance-covariance matrix estimator with

critical value 1.96 had rejection rate 0.063 (i.e., close to 0.05). Based on another data generating

process Cameron, Gelbach and Miller (2008) find that a cluster size of 30 gives the same rejec-

tion rate. Optimally, to find a suitable minimum cluster size for my two-way CRVE, I would do

a Monte Carlo experiment to compute and compare several similarly defined two-way CRVEs

with my baseline multidimensional fixed effects based on pseudorandom data from simulating

a data generating process imitating the one observed.
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(precipitation) levels in a bin indexed by the horizontal axis. The exchange is

made either in the current or prior year-month, but the impact on conflict inci-

dence is always an effect in the current year-month. For statistical inference, I

add light red (blue) regions to depict 95 percent confidence bands of the tem-

perature (precipitation) response functions.
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B. PRIOR YEAR-MONTH

FIGURE 3. CONFLICT INCIDENCE RESPONSE FUNCTIONS

Notes: The left and right figure of Panel A (B) plots estimates and 95 percent confidence

bands of the contemporaneous (one year-month lagged) conflict incidence temperature and

precipitation response functions—i.e., {βl
i}i and {γl

j}j for l = 0 (1)—obtained by estimating

(1). The omitted temperature- and precipitation-day bins are [10, 15) ◦C and [0.8, 1) mm. The

number of observations is 54,526 from a balanced panel of 398 districts and 137 year-months.

Mean conflict incidence is about 15 percent. Standard errors two-way clustered at the district-

and year-month-level.
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I find that the effect on conflict incidence from contemporaneously exchang-

ing a day with temperature between 10-15 ◦C to a warmer day is insignificant,

but that there is a significantly negative effect if the exchange is made for a

cooler day. Using an F-test I reject the null hypothesis that all coefficients on

the current temperature-day bins are zero (p-value < 0.05). This finding sug-

gests that there is a significant link between temperature and the likelihood of

a conflict. The link is also substantial. For example, exchanging a day with

temperature between 10-15 ◦C to a day with temperature below 10 ◦C decrease

conflict incidence by about 0.5 percent, which is 1/30 of the average probabil-

ity of conflict (15 percent). Hence, the predicted decrease in conflict incidence

from, e.g., five such exchanges is 1/6 of the average.

The remaining response functions are however insignificant. Indeed, using

an F-test, I do not reject the null hypothesis that all coefficients on the one

year-month lagged temperature-day bins, and the current and one year-month

lagged precipitation-day bins, are zero (p-value ≈ 0.7).29 This result suggests

that precipitation does not drive the occurrence of conflict and that current

weather variations do not delay conflicts that will eventually occur.

That contemporaneously exchanging days in the omitted temperature-day

bin to colder, but not warmer, days significantly affect conflict incidence, is

counterintuitive. To get a better sense of the result I vary the omitted bin in

Figure 4 (cf. footnote 15). I find that exchanging a day with temperature be-

low 5 ◦C for a 5-20 ◦C warmer day significantly raise the conflict risk. Thus,

for the six figures that represent this pattern, I get the result that temperature

increases above the omitted temperature-day bin lead to significant increases

in the conflict risk. However, the remaining figures show that temperature in-

29The p-value associated with this F-test is virtually unaffected by the choice of omitted bins

(not shown).
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Estimate 95% Confidence Interval Significant at 5% α-level

FIGURE 4. COMPLETE CONFLICT INCIDENCE TEMPERATURE RESPONSE

Notes: These figures plots estimates and 95 percent confidence intervals of {β0
i }i obtained

by estimating (1). For each temperature-day bin i there is a corresponding figure such that bin

i is the omitted bin when estimating (1). The number of observations is 54,526 from a

balanced panel of 398 districts and 137 year-months. Mean conflict incidence is about 15

percent. Standard errors two-way clustered at the district- and year-month-level.
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creases above the omitted bin do not increase the conflict risk.

To reconcile these seemingly contradictory results, note that the OLS esti-

mates of the regression coefficients {β0
i }i in (1) capture changes in the influence

of temperature on conflict incidence relative to a baseline influence.30 Thus,

Figure 4 is to be interpreted as follows. First, that there is no significant change

in the influence of diurnal temperature variation on the average risk of conflict

from 5 ◦C and above. Second, that this does not imply that there is no influence

of diurnal temperature variation on the average risk of conflict from 5 ◦C and

above. The reason is that we observe a temperature treatment effect at levels

between 5-35 ◦C (but not above 35 ◦C) in the sense that the influence of tem-

perature on conflict incidence between 5-35 ◦C is significantly higher than the

influence of ditto at levels below 5 ◦C.31 Consequently, there is a significant

effect of diurnal temperature variations on conflict incidence. Furthermore, the

magnitude of this effect is in general nondecreasing in temperature and tends

to increase with higher temperature levels.

5.2 Sensitivity Analysis

In this subsection, I provide additional justification of my baseline model and

insight into my baseline temperature-conflict link. I also underline that base-

30Formally, ∑i β0
i Ti

dt = km(t)β
0
i0
+ ∑i 6=i0(β0

i − β0
i0
)Ti

dt, where km(t) is the number of days in

month m during year-month t. Hence, since km(t)β
0
i0

is picked up by the (province-)year-month

fixed effects, estimating (1) by OLS gives estimates of the influence of temperature on conflict

incidence relative to the influence present when temperature varies in the omitted bin i0 (i.e.,

β0
i − β0

i0
). Also, see Appendix B where I mathematically motivate why the {β0

i }i capture the

average diurnal influence of temperature on conflict incidence.
31In other words, for each fixed bin q ∈ {[5, 10), . . . , [30, 35)} ◦C, I cannot, at the 5 percent

α-level, reject the null hypothesis H0 that β0
q − β0

r = 0 for any bin r ∈ {[5, 10), . . . , [30, 35)} ◦C,

but I can reject H0 for multiple bins r with maximum temperature levels below 5 ◦C, and the

OLS estimates of these significant β0
q − β0

r are positive.
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line results are robust to a battery of alternative specifications.

Alternative Bin Construction.—The primary functional form assumption of

my baseline specification (1) is that the weather-conflict relationship is constant

within the temperature- and precipitation-day bins. If this modeling assump-

tion is false, the estimated weather-conflict relationship may mask important

nonlinearities. Regarding temperature the assumption is investigated in Figure

5 where the baseline specification is re-estimated with alternative temperature-

day bins. For temperature-day bins of width 3 ◦C, I observe no additional

nonlinearity (Figure 5a). However, for temperature-day bins of width 10 ◦C,

nonlinearities previously observed at the lower and upper end of the tempera-

ture distribution are masked (Figure 5b).32

The choice of temperature-day bins therefore stand between bins of width 5

or smaller (e.g., 3 ◦C). To make a selection, note that the constructed temperature-

day bins are better measured for temperature-day bins of width 5 ◦C than of

smaller widths.33 Thus, since temperature-day bins of width 5 ◦C do not seem

to mask any important additional nonlinearity when compared to temperature-

day bins of width 3 ◦C, and are less susceptible to measurement error than bins

of smaller widths, the former is a more sensible choice.

Precipitation over Afghanistan is non-normally distributed and positively

32Figure C.1 in Appendix C illustrates the distribution of temperature and precipitation over

the alternative temperature- and precipitation-day bins discussed in this subsection. Note that

the distribution of precipitation across the bins in Figure 2 and C.1 are similar but not identical.
33Consider a bin b = [b, b] and let w̃ denote a measure of a weather variable w. Further

suppose that w̃ is measured with additive error u such that w̃ = w + u. Suppose w̃ ∈ b and set

l = min(w̃− b, b− w̃). Then w = w̃− u ∈ b if and only if |u| ≤ l. Since l is nondecreasing in

the expansion of b (i.e., decreasing b or increasing b) it follows that the likelihood that |u| ≤ l

is nondecreasing in the length of the bin. That is, the measurement error of the bins tend to

decrease with their width.
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FIGURE 5. ALTERNATIVE CONFLICT INCIDENCE TEMPERATURE RESPONSE FUNCTIONS

Notes: Panel A (B) plots estimates and 95 percent confidence intervals of the effects from

exchanging a day with temperature levels between 13 and 16 ◦C (10 and 20 ◦C) to a day in

another temperature-day bin obtained by estimating (1) with alternative temperature-day

bins. The number of observations is 54,526 from a balanced panel of 398 districts and 137

year-months. Mean conflict incidence is about 15 percent. Standard errors two-way clustered

at the district- and year-month-level.

skewed. To account for this, I apply an alternative definition of precipitation-

day bins where I first order precipitation (plus 0.001) on a log scale. Then I

define precipitation-day bins as unit intervals on this scale. Using these bins I

re-estimate (1). I find in Figure 6 that precipitation still plays no significant role

and that the predicted pattern is similar to the baseline pattern.34

34The choice of temperature- and precipitation-day bins is somewhat arbitrary. Though diag-

nostic tools for assessing model fit (e.g., information criteria and coefficients of determination)

could be applied to choose that set of bins which maximized fit, it is hard to correct for the

degree of measurement error associated with each set. So I still prefer the analysis presented

here. Furthermore, there is a curse of dimensionality problem in that there is an uncountably

infinite number of different sets of bins. Optimally, I would in a first stage estimate a nonpara-

metric model controlling for my set of fixed effects to identify important nonlinearities before

continuing with my parametric analysis.

30



-0.010

-0.005

0.000

0.005

0.010

[m
in,

 -5
)

[-5
, -4

)

[-4
, -3

)

[-3
, -2

)

[-2
, -1

)
[-1

, 0
)

[0,
 1)

[1,
 2)

[2,
 3)

[3,
 4)

[4,
 5)

[5,
 m

ax
]

Daily Average Precipitation (mm)

Estimate 95% Confidence Interval Significant at 5% α-level

Estimated Impact of a Day in Precipitation-Day Bins on Conflict Incidence,
Relative to a Day in the [-1, 0) log mm Bin

FIGURE 6. ALTERNATIVE CONFLICT INCIDENCE PRECIPITATION RESPONSE FUNCTION

Notes: This figure plots estimates and 95 percent confidence intervals of the effects from

exchanging a day with log precipitation (plus 0.001) levels between −1 and 0 to another log

precipitation (plus 0.001)-day bin obtained by estimating (1) with alternative

precipitation-day bins. The number of observations is 54,526 from a balanced panel of 398

districts and 137 year-months. Mean conflict incidence is about 15 percent. Standard errors

two-way clustered at the district- and year-month-level.

Onset and Ending.—About 33 percent of all conflict onsets continue with

conflicts next year-month. My baseline specification ignores such persistence.

Instead of including a lagged dependent variable,35 I separately model conflict

onset and ending. Conflict onset is defined as Onsetdt = 1(Cdt = 1|Cd,t−1 = 0)

35Nickell (1981) show that including a lagged dependent variable in a balanced panel make

regression estimators inconsistent of O(1/T), where T denote the number of observations

within a group. Specifically, as the number of district-months goes off to infinity for fixed

T, under homoskedasticity and no serial correlation of unobservables, the asymptotic bias on

all coefficients scales like −V(εdt)
T2

(T−1)−Tρ+ρT

(1−ρ)2 , where ρ is the autoregressive coefficient. Thus,

even for T = 10 this analytically derived biasing factor is around −0.16 if V(εdt) = 1 and

ρ = 0.5. Monte Carlo experiments by Judson and Owen (1999) further suggest that the bias

is nonnegligible for T = 15. Here the groups are district-months with T = 11 or 12 years

each, and thus including a lagged dependent variable would lead to sizable bias. Further

note that the inclusion of a lagged dependent variable would be a bad control for the lagged

temperature- and precipitation-day bins by construction.
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and ending as Endingdt = 1(Cdt = 0|Cd,t−1 = 1). That is, the onset of a new

conflict is modeled as the occurrence of a battle-related death in the current

year-month given no battle-related death last year-month, and 0 otherwise; and

conflict ending is similarly interpreted. The model for conflict onset (ending)

is then given by replacing Cdt with Onsetdt (Endingdt) in (1). Following Bazzi

and Blattman (2014), the regression for onset (ending) excludes year-months

of continuing conflict (peace). If this sample selection is not made, we will

constrain weather variations to have the same effect in year-months of peace as

in year-months of conflict.36

Figure 7 and 8 show the response functions for onset and ending.37 I find

that precipitation neither plays a significant role in driving onsets nor endings.

More importantly, I find that contemporaneous but not lagged temperature

variations drive conflict onsets. Contemporaneous temperature does not sig-

nificantly drive conflict endings, and by and large lagged temperature does

not either. However, the estimated lagged conflict ending temperature re-

sponse function seem to suggest that past temperature variations delay the on-

set of peace, and weakly significant coefficients near the [−10,−5) ◦C bin gives

weak credence to this statement. That the share of observations with continu-

ing peace is about 77.1 percent explains the fact that estimates for endings are

36It is theoretically possible to treat all cases (onset, ending, the continuation of peace and

conflict) in an ordinal regression model (e.g., ordered probit or logit). However, in that case,

due to the incidental parameter problem, I cannot include the multidimensional fixed effects

necessary for credible causal identification.
37Note that the number of observations is less than for the baseline results as I for conflict

onset (ending) exclude district-year-months of continuing conflict (peace), where continuing

conflict (peace) is coded as 1(Cdt = 1|Cd,t−1 = 1) = 1 (1(Cdt = 0|Cd,t−1 = 0) = 1). This

exclusion also results in singletons (i.e., fixed effects groups with one observation) that I drop

to avoid overstating statistical significance. See Appendix E for details on not maintaining

singletons.
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much less precise (see footnote 37). I conclude that there is still evidence for a

temperature-conflict link and that the baseline contemporaneous temperature

response function seems to capture an effect of temperature variations on the

onsets of conflicts.
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FIGURE 7. ONSET RESPONSE FUNCTIONS

Notes: The left and right figure of Panel A (B) plots estimates and 95 percent confidence

bands of the contemporaneous (one year-month lagged) temperature and precipitation

response functions obtained by estimating (1) after replacing the dependent variable with

conflict onset and excluding year-months of continuing conflicts. The number of observations

is 50,984 from an unbalanced panel of 398 districts and 137 year-months. Mean conflict onset

is about 9 percent. Standard errors two-way clustered at the district- and year-month-level.

Adaption.—My baseline specification (1) does not account for adaptation as
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FIGURE 8. ENDING RESPONSE FUNCTIONS

Notes: The left and right figure of Panel A (B) plots estimates and 95 percent confidence

bands of the contemporaneous (one year-month lagged) temperature and precipitation

response functions obtained by estimating (1) after replacing the dependent variable with

conflict ending and excluding year-months of continuing peace. The number of observations

is 10,860 from an unbalanced panel of 284 districts and 137 year-months. Mean conflict

ending is about 36 percent. Standard errors two-way clustered at the district- and

year-month-level.
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the marginal effect of an additional hot day is by construction constant. This

assumption is violated if, e.g., district-specific populations adapt to a high

number of hot days within a month. Ex ante it may seem implausible that

any substantial adaptation occurs within months. In any case, in an attempt

to account for within district-month adaptation, I replace ∑1
l=0 ∑i βl

iTd,t−l with

∑3
m=1 ∑1

l=0 ∑i βlm
i (Ti

d,t−l)
m in (1). That is, I include a polynomial of order 3 in

each temperature- and precipitation-day bin.38 For the resulting specification

the contemporaneous total effect on conflict incidence from exchanging Ti days

with temperature levels in the omitted bin to Ti days in bin i is ∑3
m=1 β0m

i (Ti)m.

Estimating this specification might suggest a convex temperature-conflict link

such that, e.g., within district-months populations adapt to a steady increase in

the number of warm days.

Figure 9 plots estimates and 95 percent confidence intervals of ∑3
m=1 β0m

i (Ti)m

for various Ti. I find no significant evidence of adaptation within district-

months. Estimated relationships are either approximately linear or, if not, in-

significant in the area in which the non-linearity takes off. Thus, there is no ev-

idence of within district-month adaptation, and the temperature-conflict link

seems well-described by the baseline constant marginal effects model (1).

Seasonal Heterogeneity.—Figure 10 plots seasonal conflict incidence temper-

ature response functions. Specifically, the temperature- and precipitation-day

bins of (1) interacted with a vector of four seasonal dummies covering win-

ter, spring, summer and autumn.39 This adjustment allows me to test if the

temperature-conflict link is heterogeneous across the seasons. One reason for

expecting seasonal heterogeneity is the seasonal variation in planting seasons

38Deryugina and Hsiang (2017) use this type of specification in a similar context.
39Winter covers December to February; spring covers March to May; summer covers June to

August; and autumn covers September to November.
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FIGURE 9. CUBIC ADAPTATION MODEL

Notes: These figures plots estimates and 95 percent confidence intervals of

{∑3
m=1 β0m

i (Ti)m}i for all Ti ∈ {1, 2, . . . , 15} obtained by estimating (1) after replacing

∑1
l=0 ∑i βl

iTd,t−l with ∑3
m=1 ∑1

l=0 ∑i βlm
i (Ti

d,t−l)
m. The omitted temperature-day bin is [10, 15)

◦C. The number of observations is 54,526 from a balanced panel of 398 districts and 137

year-months. Mean conflict incidence is about 15 percent. Standard errors two-way clustered

at the district- and year-month-level.
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(e.g., for the highly prioritized common wheat, planting tends to occur during

winter and spring). Hence, if, e.g., variation in temperature affects conflicts

through the agricultural sectors, we expect seasonal heterogeneity.

I find that the temperature response functions are insignificant during the

summer and marginally significant during winter and autumn.40 During spring,

the temperature-conflict link is significant and alike the full sample tempera-

ture response function except at the positive end of the temperature distribu-

tion at which the estimated impact is negative (but insignificant). Further note

that during winter and summer the predicted impact of high temperature lev-

els is positive, but negative during spring and autumn. This finding suggests

that there is seasonal heterogeneity in the temperature response functions.41

Additional Robustness Checks.—I perform various robustness checks in Ap-

pendix D. For brevity I list these here: (i) performing a falsification test where

one year-month leads of all temperature- and precipitation-day bins are in-

cluded (Figure D.1); (ii) testing for robustness to different standard error correc-

tion methods (Figure D.2); (iii) testing the relevance of higher order lags (two to

five) of the temperature- and precipitation-day bins (Figure D.3); (iv) including

spatial lags of all temperature- and precipitation-day bins (Figure D.4, D.5 and

D.6); (v) replacing province-year-month fixed effects with fixed effects based

on longitude and latitude (Figure D.7); (vi) controlling for district-year fixed

effects (Figure D.8); and (vii) investigating the relationship between weather

variations and conflict intensity (Figure D.9). Baseline results are by and large

40The large estimated coefficient on the [25, 30) ◦C bin during winter seems to be an artifact

of the fact that there are only seven observations that have ever occurred in this bin during

winter for the full sample period.
41Formally, using an F-test, I reject the null hypothesis that the contemporaneous conflict

incidence temperature response functions for the four seasons are equal (p-value < 0.001).
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FIGURE 10. SEASONAL CONFLICT INCIDENCE TEMPERATURE RESPONSE FUNCTIONS

Notes: These figures plots estimates and 95 percent confidence intervals of seasonal conflict

incidence temperature response functions. The number of observations is 54,526 from a

balanced panel of 398 districts and 137 year-months. Mean conflict incidence is about 15

percent. Standard errors two-way clustered at the district- and year-month-level.
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robust to these checks.

5.3 On the Role of Opium Production

The absence of district-level data and district-year-month-level data, in particu-

lar, make it hard to pin down what mechanism generates the baseline temperature-

conflict link. Empirical studies on conflicts in Afghanistan suggests that there is

a connection between opium and conflict (Bove and Elia, 2013; Gehring, Lan-

glotz and Kienberger, 2017; Lind, Moene and Willumsen, 2014). These stud-

ies motivate a discussion of whether temperature shocks to opium production

partly explain the baseline temperature-conflict link.

In this section, I provide suggestive evidence on the role of opium produc-

tion in explaining the baseline temperature-conflict link. To this end, I augment

my baseline specification (1) by adding

1

∑
l=0

∑
i

θl
i

(
Ti

d,t−l ×OpiumPlantingSeasonpm ×Πd

)
, (2)

where OpiumPlantingSeasonpm is 1 if the historical opium planting season

period in province p covers month m, and 0 otherwise; and Πd is a district-level

proxy for planned opium production and density of opium poppy sites.42

I first set Πd to a dummy variable that is 1 if opium cultivation has oc-

curred in district d over the sample period, and 0 otherwise. The use of this

proxy allows me to capture the additional effect of temperature on conflict in-

cidence during province-specific opium planting seasons for districts where

opium cultivation has taken place during the sample period. Though I have

annual information on opium cultivation, the use of this long-term indicator

42Note that the term OpiumPlantingSeasonpm × Πd is controlled for by the district-month

fixed effects δdm.
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represents an attempt to avoid reverse causality bias from conflict incidence to

opium cultivation (Lind, Moene and Willumsen, 2014).43

However, if one-time conflict shocks affect the likelihood of ever cultivating

opium, OLS estimators of θl
i will be inconsistent. Also, the district-level mea-

sure of opium cultivation is indicative only and inferred from province-level

statistics of opium cultivation (UNODC, 2016). These concerns motivate the

use of a proxy exogenous to conflicts, namely my constructed environmental

opium suitability index. Specifically, my second choice of Πd goes from 0 to 1,

where Πd is 0 and 1 for the districts for which it is least and most suitable to

grow opium poppies, respectively. The idea is that land suitable for growing

opium poppies is a valuable resource for opium production and is inelasti-

cally supplied by Nature. Thus, all other things being equal, I expect planned

opium cultivation to correlate positively with environmental opium suitability

and production output to be dense in districts with high environmental opium

suitability. The use of this proxy, therefore, allows me to capture the additional

effect of temperature on conflict incidence during opium planting seasons in

districts where it is relatively suitable to grow opium poppies.

I find in Figure 11a that there is no additional impact during the opium

planting seasons for districts that have been growing opium poppies over the

sample period for all temperature-day bins, except that in which temperature is

above 35 ◦C. The effect is quantitatively meaningful as exchanging a day with

mean temperature to a day with temperature above 35 ◦C during the opium

planting season decrease the likelihood of a conflict incident by about 3.6 per-

cent (s.e. about 1.3 percent). Figure 11b compares districts suitable for growing

opium poppies with that in which it is least suitable. Again, I only find an

additional effect at temperature levels above 35 ◦C, with a decrease in conflict

43I provide simple descriptive statistics relating to these proxies in Table C.1 in Appendix C.
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B. ENVIRONMENTAL SUITABILITY-BASED PROXY

FIGURE 11. OPIUM SHOCK CONFLICT INCIDENCE RESPONSE FUNCTIONS

Notes: These figures plots estimates and 95 percent confidence intervals of {θl
i}i obtained

by estimating (1) after adding (2). The proxy for planned opium production and density of

opium poppy sites Π used in Panel A is an indicator that is 1 if the district has ever produced

opium over the sample period, and 0 otherwise. The proxy Π used in Panel B is my

district-level environmental opium suitability index. The omitted temperature-day bin is

[10, 15) ◦C. The number of observations is 54,526 from a balanced panel of 398 districts and

137 year-months. Mean conflict incidence is about 15 percent. Standard errors are two-way

clustered at the district- and year-month-level.
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incidence by about 7.9Π percent (s.e. about 2.1Π percent), where Π is the value

of the opium suitability index. The median value of Π is about 0.37, so for the

50 percent most opium suitable districts the effect is at least about 2.9 percent

(s.e. about 0.78 percent).

These findings suggest that exogenous temperature shocks to opium pro-

duction lower the risk of a conflict event occurring since the maximum tem-

perature for germination of the opium poppy is about 36 ◦C (Kamkar et al.,

2012). Now, in Subsection 5.1 we found that the influence of temperature vari-

ations in [35, 40) ◦C was null. However, as we here see, adverse shocks to

opium production induced by rising temperature seem to dampen the conflict

risk. Consequently, this suggests that it cannot be temperature shocks to opium

production that explains the baseline temperature-conflict link.

6 Conclusion and Discussion

In this thesis, I construct a novel panel dataset on weather and conflicts across

all 398 districts of Afghanistan from July 2005 to December 2016. By fitting

this dataset to fixed effects models that, I argue, allow me to utilize exogenous

interannual variation in daily temperature and precipitation within district-

months, I make three robust findings. First, exchanging colder for warmer

days tends to significantly increase the likelihood of a conflict, and this link is

quantitatively meaningful. Second, precipitation does not drive the occurrence

of conflict. Third, there are no delayed effects of either variation in temperature

or precipitation on conflict incidence.

I emphasize that exchanging colder for warmer days tends to, but do not al-

ways, significantly increase the likelihood of a conflict. According to my base-

line results, the influence of temperature on conflict incidence stops changing
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from 5 ◦C and above. I hypothesize that this result is explained by qualita-

tive differences in conditions present at certain temperature levels. For exam-

ple, most prioritized fruits, nuts, and field crops in Afghanistan (e.g., raisins,

almonds, wheat and opium poppies) hardly grow at temperature levels be-

low 5 ◦C.44 In contrast, 5-35 ◦C indicate suitable growing conditions. Hence,

comparing days with temperature levels above 5 ◦C to days with temperature

levels below 5 ◦C represent important differences in growing conditions that

are unessential when comparing days with temperature levels between 5-35
◦C. This argument is sound under the premise that temperature mainly af-

fects conflict incidence via the agricultural channel. However, there are also

important non-agricultural differences between days with positive and nega-

tive temperature levels. For example, precipitation falls as snow when the air

temperature is below 0 ◦C. Hence, if the quality of roads in Afghanistan is sus-

ceptible to excessive snow covers, comparing days with air temperature below

0 ◦C to warmer days may represent changes in the relative likelihood for differ-

ent groups to win a battle. For example, the Government of Afghanistan may

have vehicles that are well-functioning in snow-covered terrain, while the Tale-

ban do not. These changes may not occur when air temperature varies from 0
◦C and above.

Thus, we see that the identified reduced-form effect of temperature on con-

flict incidence may operate through numerous causal pathways. The primary

drawback of this thesis is that I do not pin down any specific path. For ex-

ample, temperature shocks may affect economic productivity, the composition

of ethnic groups, the likelihood to win battles or attitudes towards violence.

However, lack of monthly information on district characteristics hinders me

44See the Food and Agriculture Organization of the United Nations Ecocrop database at

http://ecocrop.fao.org/.
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from assessing the role of these factors in driving conflicts. Nevertheless, I con-

tribute to the literature in three ways.

First, I provide suggestive evidence that shocks to opium production in-

duced by temperature levels above 35 ◦C reduce the likelihood of a conflict.

Since the baseline results indicates that the net effect of temperature levels

above 35 ◦C on conflict incidence is null, this result suggests that it is not tem-

perature shocks to opium production that explains the observed temperature-

conflict link.

Second, I present the first subnational fixed effects study on the weather-

conflict relationship in Afghanistan. My finding of a significant temperature-

conflict link motivates further examination of questions related to mechanisms

and heterogeneity. The result that precipitation plays no significant role is also

of interest. The climate in Afghanistan is dry, and about 80 percent of all cereals

come from irrigated areas (NEPA, UNEP and WFP, 2016). Hence, if water sup-

ply shocks drive violence in Afghanistan, availability of irrigation water may

be a more critical causal factor behind conflicts than precipitation. Irrigation-

fed crops in Afghanistan are often heavily dependent on snowmelt from the

Hindu Kush mountain range. It is, therefore, a natural and exciting exten-

sion of this project to use snow-related data from NASA to identify how, e.g.,

snowmelt-related droughts in the mountains affect district-level river flows,

irrigation capacity and, in turn, conflicts.

Third, I am first to employ such a high spatial resolution to study the im-

pact of high-frequency monthly variation in weather on intergroup conflicts.

Though the temporal frequency represented by year-months, and the spatial

resolution served by districts (i.e., second administrative-level regions), have

been previously used (Fetzer, 2014; Maystadt and Ecker, 2014), no study uti-

lizes both of these levels of disaggregation. Consequently, I am first to find a
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link between monthly variation in temperature and intergroup conflicts at the

district-level.
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A Additional Data Details

A.1 Data Sources

A shapefile from the Empirical Studies of Conflict Project (ESOC) define the

division of Afghanistan into administrative units and their respective bound-

aries. The shapefile is accessible at https://esoc.princeton.edu/files/

administrative-boundaries-398-districts.

The dataset on conflict events is the UCDP GED Global version 17.2. It is the

most recent version of the UCDP GED. The dataset is accessible as a shapefile

at http://ucdp.uu.se/downloads/.

Raster data on temperature comes from a product developed by the LIS

team at NASA GSFC. The raster data is the NASA LIS version 7 Noah-36. The

data is not publicly available, but NASA GSFC provides subsets of the data

upon permission. Contact information is available at https://www.nasa.gov/

content/contact-goddard.

Raster data on daily precipitation comes from the CHIRPS v2.0

Global Daily netCDF products. The raster data is accessible at the

FTP server ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/

global_daily/netcdf/p05/.

To construct my opium suitability index, I used several sources. First,

global land cover maps from GlobCover 2009 at http://due.esrin.esa.int/

page_globcover.php (Arino et al., 2012). Second, DIVA-GIS-specific world cli-

mate data between 1950 and 2000 at 2.5 arcminutes resolution from World-

Clim version 1.3 at http://www.diva-gis.org/climate. Third, two river net-

works over parts of Asia and Southwest Asia from the United States Geo-

logical Survey (USGS) mapping product Hydrological data and maps based

on SHuttle Elevation Derivatives at multiple Scales (HydroSHEDS) at https:
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//hydrosheds.cr.usgs.gov/datadownload.php?reqdata=15rivs.

The UNODC provide indicative district-level data on opium cultiva-

tion. Contact information is available at https://www.unodc.org/unodc/

en/about-unodc/contact-us.html. The data is also accessible from the

UNODC Afghanistan Opium Surveys 2005-2016 available at https://www.

unodc.org/unodc/en/crop-monitoring/index.html?tag=Afghanistan. In-

formation on the typical period for opium planting at the provin-

cial level comes from the UNODC Afghanistan opium surveys (UN-

ODC, 2008; UNODC, 2013) available at https://www.unodc.org/unodc/en/

crop-monitoring/index.html?tag=Afghanistan.

A.2 District Assignment of UCDP GED Events

Here I highlight a caveat related to the UCDP GED Global version 17.2.

It concerns the fact that I cannot confirm that the district polygons in

the ESOC shapefile contain the correct coordinates used in the UCDP as-

signment of UCDP GED events to districts. Because though the UCDP

register the longitude and latitude of a UCDP GED event to the cen-

troid of a district if the event is known to occur at the district-level, but

not at a more fine-grained level, they use no, and cannot provide any,

shapefile with information on the particular district centroid used. In-

stead, the UCDP use gazetteers. The gazetteers used for all UCDP GED

events is unknown. However, most of them are in the GEOnet Names

Server at https://www.nga.mil/ProductsServices/GeographicNames/Pages/

default.aspx (Petterson, Therese, and Stina Högblad at Uppsala University,

personal communication, March 13 and 20, 2018).

To investigate this further, I noted that the UCDP internally track adminis-

trative changes in a data structure called a geotree. Upon contact, the UCDP
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provided the geotree for Afghanistan in the form of a table. The table con-

firms that compared to the ESOC shapefile, from July 2005 and onwards, the

UCDP has used a more fine-grained subdivision of Afghanistan for all UCDP

GED events and that the geotree register all districts in the ESOC shapefile.

Thus, there is suggestive, but not conclusive, evidence that the number of

false assignments is low when I assign UCDP GED events to the districts of

Afghanistan as defined by the ESOC shapefile.

A.3 Area-Weighting

The area-weighted averages of temperature and precipitation were computed

as unweighted arithmetic averages across degree grid cells in the World Geode-

tic System 1984 (WGS84) Geographic Coordinate System. Formally, let wgdk

denote temperature or precipitation in grid cell g in district d day k. Then the

area-weighted average is

wdk ≡
∑g∈Gd

wgdk

|Gd|
, (A.1)

where Gd is the set of grid cells whose centroids fall inside that of district

d’s boundary as defined by a polygon in the ESOC shapefile.

There are two objections to this area-weighting procedure. The first is the

following. Since an oblate spheroid can approximate the figure of the Earth,

the area of each grid cell varies in longitude and latitude. Therefore it would be

sensible to first project the georeferenced weather data to a suitable coordinate

system with units in meters.45 Then one average across meter grid cells of

45For Afghanistan—as an Atlas of Earth shows—it would be sensible to project the raster

data on the Universal Transverse Mercator (UTM) 41N and 42N zones. This projection is be-

lieved to introduce little distortion along both dimensions as it projects small chunks of the

surface of the Earth onto a flat surface (Dell, 2009).
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equal area. My response is that the method proposed by the objection may

introduce more error into the measured weather variables as it involves the

use of a resampling algorithm when projecting the data. Furthermore, since

districts are tiny, grid cell areas are approximately constant within districts of

Afghanistan.

The other objection against my weighting scheme emphasizes that I do not

weight by, e.g., population or the area of agricultural land. My response is that

such a weighting scheme is unnecessary in this case as I focus on the reduced-

form total effect of weather variations on conflict incidence. Other weighting

schemes would emphasize some particular aspect. For example, weighting

by population size is sensible if we, e.g., have the hypothesis that rising tem-

perature levels can affect people’s propensity to do violence against others.46

Another example is to weight by the agricultural land area, which is more sen-

sible if we focus on some agricultural mechanism that is supposed to explain

the weather-conflict relationship. However, since I focus on the overall, rather

than any particular, average treatment effect of weather variations on conflict

incidence, neither of these weighting schemes is appropriate for my research

question.

A.4 Data Processing

Data processing was first carried out using ArcPy. ArcPy is a module in Python

2.7 included in ArcGIS 10. I wrote Python scripts that imported the ArcPy

geoprocessing tools to process the georeferenced datasets. The scripts accom-

plished the following tasks.

• To match UCDP GED events to districts of Afghanistan as defined by the

46See Baysan et al. (2015) for a recent discussion on the role of noneconomic psychological

and physiological factors in driving the temperature-conflict relationship.
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ESOC shapefile of Afghanistan. Specifically, to intersect the UCDP GED

and ESOC shapefile.

• To compute the area-weighted average of precipitation for each day and

district of Afghanistan. Specifically, to for loop over a folder of the CHIRPS

v2.0 daily precipitation datasets and compute the area-weighted average

for all districts within each loop.

• To compute the area-weighted average of temperature for each day and

district of Afghanistan. Specifically, to iteratively spawn subprocesses,

each of which processes four days of NASA LIS version 7 Noah-36 tem-

perature data at a time.47

Together with the ArcPy module and DIVA-GIS (Hijmans et al., 2001) I also

accomplished the following task:

• To compute the opium suitability index. First, normalize the GlobCover

2009 global land cover map with the normalized values in Table 2 in Kien-

berger et al. (2017). Second, with DIVA-GIS, compute a normalized cli-

matic suitability index of opium poppy (Papaver somniferum) based on tol-

erable climatic conditions specified in Table 3 in Kienberger et al. (2017).

Third, construct a proxy for water availability by computing and normal-

izing the river density across Afghanistan based on two river networks

over parts of Asia and Southwest Asia from the USGS HydroSHEDS.

Fourth, compute a weighted arithmetic average based on (Analytical Hi-

erarchy Process) weights in Kienberger et al. (2017) that are suggested by
47Due to the high resolution of the temperature datasets, the size of a folder containing

all daily temperature datasets is about 3.5 terabytes as for each day there is a corresponding

dataset of size about 500 megabytes. Since the ArcPy module (ultimately ArcGIS 10) reserves

memory space for each computation within a for loop, I had to circumvent the finite barrier of

the operating system by processing the data using a set of subprocesses.

58



a sample of six expert consultants.48 Finally, aggregate to the district-level

and normalize to a value between 0 and 1.49

The output data that resulted from the completion of the above tasks were

imported to Stata 14 for cleaning and analysis. Replication files are available

upon request (including results not shown).

48In contrast to Kienberger et al. (2017) I do not account for varying soil suitability across

Afghanistan. Two reasons explain this. One, the six experts consulted in Kienberger et al.

(2017) assigned a small weight (11 percent) to its importance as a measure of environmental

poppy suitability. Two, the exact weighting scheme of the FAO-74 soil classification system

was not disclosed by Kienberger et al. (2017).
49Normalizing is given by the transform xi 7→ xi−mini(xi)

maxi(xi)−mini(xi)
for all districts i.
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B Mathematical Appendix

Daily weather data can be used to approximate nonlinear weather-conflict re-

lationships.50 To see this, suppose that the weather-conflict relationship over

some fixed sample period τ = [t, t] is

Cdt = ∑
k∈Kt

f (wdtk) + ηdt, t ∈ τ, (B.1)

where f is a continuous function; Cdt is some measure of conflicts (e.g.,

conflict incidence) in district d time period t (e.g., year-month); wdtk is a weather

event of district d day k in time period t that is a realization from a climatic

element whose empirical distribution function across the days has a compact

support Sdt that is specific for each district d and time period t;51 Kt is the set

of days in time period t; and ηdt is a nuisance parameter containing controls,

determinants, fixed effects and error terms in a regression model with Cdt as

the dependent variable (e.g., my baseline specification (1)). In other words,

for each district, the assumption is that effect of weather on conflicts during

a given year-month is additively separable into a sum of continuous diurnal

weather effects.

The importance of this assumption is its implication. For if given, my base-

line specification retrieves inherently nonlinear effects at the daily level. In-

deed, as Proposition 1 below shows, Assumption B.1 implies that a linear para-

metric function with parameters describing averages of nonlinear weather ef-

fects approximates the effect of the particular weather phenomena on conflict.

Proposition 1 (Binned Weather-Conflict Dose-Response Function). Assumption

50See Subsection 4.1 in Hsiang (2016) for an overview on how to identify nonlinear effects of

weather variations.
51The support define the physical limits of weather variations. For a formalization, see

Hsiang (2016).
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B.1 justifies the approximation

Cdt ≈∑
b

βbwb
dt + ηdt, t ∈ τ, (B.2)

where for a bin b of Sdt, wb
dt = ∑k∈Kt 1b(wdtk) with 1b(wdtk) = 1 if wdtk ∈ b and

0 otherwise.

Proof. Let t ∈ τ and partition Sdt into nontrivial and nonoverlapping bins.52

Then, since f is continuous, by the Mean Value Theorem for Integrals, for each

bin b = [wb, wb] there is a real ξb ∈ b such that

f (ξb) =
1

wb − wb

∫ wb

wb

f (w) dw. (B.3)

The above equation justifies the approximation

f (wdtk) ≈∑
b

f (ξb)1b(wdtk). (B.4)

Equation B.3 and Assumption B.1 then implies

Cdt = ∑
k∈Kt

f (wdtk) + ηdt (B.5)

≈ ∑
k∈Kt

∑
b

f (ξb)1b(wdtk) + ηdt (B.6)

= ∑
b

f (ξb)︸ ︷︷ ︸
βb

∑
k∈Kt

1b(wdtk)︸ ︷︷ ︸
wb

dt

+ηdt. (B.7)

�

From Proposition 1, two important corollaries follows. First, (B.2) shows

that the parameters {βb}b can be retrieved by regressing Cdt on {wb
dt}b, after

accounting for terms in ηdt.
52The partitioning is possible as the empirical support is countable.
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Second, each βb identifies an average effect of potentially nonlinear effects

of weather on conflict, as seen in (B.3). It is therefore beneficial concerning

functional form specification to tighten the length of each bin as it makes the

functional form restriction described above more plausible. Though decreasing

the length of each bin reduces the approximation error theoretically, in practice,

it increases the measurement error (cf. footnote 33) and also the number of pa-

rameters to be estimated so that the degrees-of-freedom decreases. In the limit

as the length of each bin approaches zero, the number of in-sample perfectly

multicollinear wb
dt increases and estimation cannot be carried out using OLS.

This trade-off cannot be parametrically resolved using known statistical infer-

ential tools. Instead, the trade-off was experimentally addressed by cutting the

support of the empirical weather distribution at end points and then choos-

ing bins of equal lengths within the remaining support such that the nonlinear

weather-conflict relationship was retrieved, as discussed in Section 4 and 5.

Augmenting Assumption B.1 with the following assumption yields my base-

line specification (1):

Cdt = ∑
k∈Kt

f (wdtk) + ηdt, (B.8)

where f is a multivariate function and wdtk a vector of weather variables.

Under the assumption that temperature and precipitation are sufficient statis-

tics for capturing the weather-conflict relationship I let f be bivariate and wdtk =

(Tdtk, Pdtk). To acquire (1) I assume that the effect of temperature and precipita-

tion is additively separable; i.e., that

f (wdtk) = f1(Tdtk) + f2(Pdtk), (B.9)

where f1 and f2 are two univariate continuous functions. Now, by analogy,

following the steps of Proposition 1 we acquire (1).
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To conclude: I have argued that my baseline specification (1) approximate

any continuous weather-conflict relationship (linear or nonlinear). However,

I do not derive the statistical approximation error.53 Lastly, I note that one

can relax the assumption that the functions are invariant across space and time

by interacting weather variables with, e.g., regional or seasonal dummies. It

is also simple to include temporally and spatially lagged functions (see, e.g.,

Appendix D).

53It would be of interest to statistically assess the error made. One idea is the following. First,

view the empirical support of temperature and precipitation as a set of 2-cells. Second, with,

e.g., 14 temperature-day, and 13 precipitation-day, bins as in my baseline specification, define

14 · 13 = 182 2-cells. Then, adjust (1) by excluding the temperature- and precipitation-day

bins, and including all these 2-cells. Lastly, test if the temperature response functions vary by

precipitation 1-cells. This test was carried out on my dataset. However, because of the fixed

effects, many 2-cells were omitted due to multicollinearity, making the empirical content of the

test uncertain.
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C Additional Descriptive Statistics

This section provides additional descriptive statistics. Figure C.1 illustrates the

alternative temperature- and precipitation-day bins used in Section 5.2, and

Table C.1 provide descriptive statistics relating to the analysis in Section 5.3.
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FIGURE C.1. ALTERNATIVE TEMPERATURE- AND PRECIPITATION-DAY BINS

Notes: The figure shows the average distribution of daily average temperature and

precipitation across 8 and 22 temperature-day bins (upper and lower left panel) and 13 log

precipitation-day bins (upper right panel). Each bar represents the average number of days

per year-month in each temperature or precipitation category across all 398 districts of

Afghanistan over the sample period July 2005 to December 2016. Minimum daily

temperature is about −41 ◦C, and maximum daily temperature is about 45 ◦C. Maximum

daily precipitation is about 117 mm. See the text for more details.

Source: Author’s calculations based on data from the CHIRPS and NASA GSFC.
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TABLE C.1—DESCRIPTIVE STATISTICS BY OPIUM GROWING STATUS: WEATHER AND CONFLICTS

SD

Observations Mean Overall Within

Panel A: Opium Growing Districts

Battle-related deaths†

All 36,432 1.59 8.98 8.17

If > 0 5,636 10.28 20.78 17.53

1(Battle-related deaths > 0)† 36,432 0.15 0.36 0.30

Conflict Events†

All 10,453

Government of Afghanistan vs. Taleban 9,537

Taleban vs. Civilians 450

Government of Afghanistan vs. IS 253

Daily Temperature (◦C)‡ 1,205,688 14.50 13.26 3.66

Daily Precipitation (mm)‡ 1,205,688 0.92 3.10 2.94

Opium Suitability IndexP 264 0.38 0.16

Panel B: Non-Opium Growing Districts

Battle-related deaths†

All 18,492 1.06 6.73 6.73

If > 0 2,460 7.96 16.89 13.30

1(Battle-related deaths > 0)† 18,492 0.13 0.34 0.29

Conflict Events†

All 4,015

Government of Afghanistan vs. Taleban 13,246

Taleban vs. Civilians 196

Government of Afghanistan vs. IS 10

Daily Temperature (◦C)‡ 611,978 10.88 12.88 3.61

Daily Precipitation (mm)‡ 611,978 1.02 3.39 3.23

Opium Suitability IndexP 134 0.38 0.19

Notes: This table reproduces the information in Table 1 and information on opium suitability by opium

growing status. A district is opium growing if it has in any year between 2006 to 2016 cultivated opium

poppies. The summary statistic Overall SD stands for the overall standard deviation of

the corresponding variable. The summary statistic Within SD stands for the overall standard deviation

of the corresponding variable after removing district-month fixed effects. The variable

1(Battle-related deaths > 0) is 1 if there is at least one battle-related death, and 0 otherwise. The

variable Opium Suitability Index is the constructed district-level index for environmental suitability for

opium poppy cultivation. The acronym IS stands for Islamic State (of Iraq and Syria). The sample period

is July 2005 to December 2016. All 398 districts are included in the sample. Numbers are correct to

two decimal places. †Measured at district-year-month-level. ‡Measured at district-year-month-day-level.
PMeasured at district-level.

Source: Author’s calculations based on data from the CHIRPS, NASA GSFC and UCDP.
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D Additional Robustness Checks

I now show that my baseline results in Section 5.1 are robust to a series of tests.

Falsification Test.—I plot estimates of {(β−1
i , γ−1

j )}(i,j) from

Cdt =
1

∑
l=−1

(
∑

i
βl

iT
i
d,t−l + ∑

j
γl

jP
j
d,t−l

)
+ δdm + πpt + qdm(y) + εdt. (D.1)

That is, I include one year-month leads of the temperature- and precipitation-

day bins to my baseline specification. Since I do not expect future diurnal

variation in temperature and precipitation to affect current conflict incidence,

I hypothesize that the coefficients on the leads are all equal to zero. However,

using an F-test, I reject this hypothesis at the 5, but not 1, percent α-level. Still,

as made clear by Figure D.1, this seems to be due to a seemingly spurious coef-

ficient on the [0.2, 0.4) mm bin, as all others are insignificant. Indeed, if I ignore

the [0.2, 0.4) mm bin, I cannot reject the hypothesis at the 10 percent α-level.

This suggests that, overall, forward temperature and precipitation play no sig-

nificant role in driving conflict incidence.

Different Standard Error Corrections.—In my baseline specification, I two-way

cluster at the district- and year-month-level. This clustering design allows for

serial correlation within districts and spatial correlation within year-months.

This section tests for robustness to three alternative designs.

The baseline design does not account for temporally lagged spatial depen-

dence (e.g., the dependence of observations in two districts separated in time).

I, therefore, check for robustness to two other two-way clustering designs. First

I cluster by district and region-year. This design allows for arbitrary correlation

within region-years (minimum cluster size is 72). That is, all district-months
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FIGURE D.1. CONFLICT INCIDENCE RESPONSE FUNCTIONS NEXT YEAR-MONTH

Notes: These figures plots estimates and 95 percent confidence bands of the one

year-month lead conflict incidence temperature and precipitation response functions obtained

by estimating (D.1). The omitted temperature- and precipitation-day bins are [10, 15) ◦C and

[0.8, 1) mm. The number of observations is 54,128 from a balanced panel of 398 districts and

136 year-months. Mean conflict incidence is about 15 percent. Standard errors two-way

clustered at the district- and year-month-level.

that lie in the same region-year (e.g., north of Afghanistan in 2006) are allowed

to depend on each other both spatially and temporally. Second, since the for-

mer assumes unobservables in district-months in different regions are unre-

lated, I also cluster by district and season-year, which allows for correlation

between all district-months within a season-year (e.g., spring 2006) (minimum

cluster size is 47).

I also consider robustness to Conley (1999) spatial-HAC standard errors.

The spatial-HAC correction account for heteroskedasticity and within-time spa-

tial and within-location serial correlation of unobservables.54 For the spatial

correction, I use a uniform kernel that is assumed to discontinuously fall from

1 to 0 at some spatial cutoff distance (Conley, 2010). I let the cutoff distance be

so large that arbitrary spatial correlation is allowed for (i.e., vanishes at 1,000

kilometers). For the HAC correction, I use the Newey-West (Bartlett) kernel

54Implementation is based on Fetzer (2014) and Hsiang, Meng and Cane (2011).
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that weight pairs of observations within districts such that the weights decay

linearly across time periods. I assume that there is no bound to the serial cor-

relation (i.e., vanishes at 100,000 year-months). The Conley (1999) spatial-HAC

standard error correction is conceptually similar to my baseline two-way clus-

tering design but is not computationally equivalent.

Figure D.2 show the result from re-estimating the baseline specification and

employing the three above adjustments. Note that I also include the baseline

standard error correction and one-way clustered standard errors for complete-

ness. Since I am unable, for technical reasons, to include the trend compo-

nent qdm(y) when using the Conley (1999) spatial-HAC standard error correc-

tion, I further exclude qdm(y) for comparability. The figure shows that the

two-way clustering designs yield nearly identical confidence bands, but the

baseline two-way clustering design produces a wider confidence band at the

highest temperature-day bin. Confidence bands based on the Conley (1999)

spatial-HAC correction are less conservative. The one-way clustered confi-

dence bands are only marginally smaller than the two-way equivalents. In

conclusion, in comparison to these adjustments, my baseline standard error

correction method does not overestimate standard errors and is in a worst case

scenario too conservative.

Temporal Lag Length.—I consider the significance of delayed effects of higher

order by adding two to five year-month lags to my baseline specification (1).

I find in Figure D.3 that none of these delayed effects are significant for either

temperature or precipitation.
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FIGURE D.2. CONFLICT INCIDENCE TEMPERATURE RESPONSE FUNCTIONS—CONFIDENCE

BANDS BY STANDARD ERROR CORRECTION METHOD

Notes: These figures plot estimates and 95 percent confidence intervals of {β0
i }i obtained

by estimating (1) after excluding the trend component qdm(y). Standard errors are corrected

using six different standard error correction methods. Upper left panel: One-way clustering

at the district-level (cluster size is 398). Upper middle panel: Clustering at the year-month

level (cluster size is 137). Upper right panel: Two-way clustering at district- and

year-month-level (minimum cluster size is 137). Lower left panel: Two-way clustering at the

district and region-year level (minimum cluster size is 72). Lower middle panel: Two-way

clustering at the district and season-year level (minimum cluster size is 47). Lower right

panel: Conley (1999) spatial-HAC correction with 1,000 km as the spatial distance cutoff in a

uniform kernel weight function, and Newey-West (Bartlett) kernel with 100,000 year-months

as the temporal distance cutoff. The number of observations is 54,526 from a balanced panel

of 398 districts and 137 year-months. Mean conflict incidence is about 15 percent.
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Spatial Spillovers.—Climatic events can cause outcomes to be displaced across

space and spill over to neighboring districts. Spillovers at the provincial-level

have been accounted for by the province-year-month fixed effects of my base-

line specification. However, I do not consider spillovers across provincial bound-

aries. Spillovers across provincial boundaries due to weather variations can be

partly accounted for by the following model:

Cdt =
1

∑
l=0

3

∑
π=0

(
∑

i
βπl

i Ti
πd,t−l +∑

j
γπl

j Pj
πd,t−l

)
+ δdm +πpt + qdm(y)+ εdt, (D.2)

where Ti
πd,t−l (Pj

πd,t−l) for π > 0 denote the average number of days with

temperature (precipitation) levels in bin i (j) of districts whose centroids lie

within a (π − 1, π] one hundred kilometer band from the centroid of district d

and Ti
0d,t−l ≡ Ti

d,t−l (Pj
πd,t−l ≡ Pi

d,t−l). The coefficients {(βπl
i , γπl

j )}(i,j) for π > 0

capture spatial spillovers such that, e.g., βπl
i is the estimated impact on con-

flict incidence of—in all districts within a (π − 1, π] one-hundred kilometers

radius—exchanging one day with temperature levels in the omitted bin to a

day in bin i in l year-months past to the current year-month.

Figure D.4a and D.4b show the baseline estimates when including aver-

age climate exposure within 0 to 300 kilometers in temperature and precipita-

tion. The baseline results are by and large robust to this alternative specifica-

tion. Figure D.5 and D.6 plot the spatially lagged temperature and precipita-

tion response functions in the current and prior year-month. I find that spatial

spillovers are insignificant.55

55I note that results are similar if one drops the province-year-month fixed effects except that

contemporaneous average temperature exposure within a (0, 100] km radius from a district d

significantly affect current conflict incidence in district d (not shown). This finding provides

an additional argument for the inclusion of province-year-month fixed effects in the baseline

specification (1).
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B. PRIOR YEAR-MONTH

FIGURE D.4. CONFLICT INCIDENCE TEMPERATURE AND PRECIPITATION RESPONSE

FUNCTIONS—CONTROLLING FOR REMOTE TEMPERATURE AND PRECIPITATION VARIATION

Notes: The left and right figure of Panel A (B) plots estimates and 95 percent confidence

bands of the contemporaneous (one year-month lagged) conflict incidence temperature and

precipitation response functions obtained by estimating (D.2). The omitted temperature- and

precipitation-day bins are [10, 15] ◦C and [0.8, 1) mm. The number of observations is 54,526

from a balanced panel of 398 districts and 137 year-months. Standard errors two-way

clustered at the district- and year-month-level.

Grid Cell Fixed Effects.—Provinces and their boundaries are politically de-

fined. These may therefore not suitably capture differences in agro-climatic

zones that better describe the regional effects of climate change. To try to ac-

count for this, I distribute the 398 districts of Afghanistan into 30 2.5 by 2 lon-
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FIGURE D.5. CONFLICT INCIDENCE SPATIAL TEMPERATURE LAGS

Notes: These figures plots estimates and 95 percent confidence intervals of {βπl
i }i for all

π ∈ {1, 2, 3} and l ∈ {0, 1} obtained by estimating (D.2). The number of observations is

54,526 from a balanced panel of 398 districts and 137 year-months. Mean conflict incidence is

about 15 percent. Standard errors two-way clustered at the district- and year-month-level.
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FIGURE D.6. CONFLICT INCIDENCE SPATIAL PRECIPITATION LAGS

Notes: These figures plots estimates and 95 percent confidence intervals of {γπl
i }i for all

π ∈ {1, 2, 3} and l ∈ {0, 1} obtained by estimating (D.2). The number of observations is

54,526 from a balanced panel of 398 districts and 137 year-months. Mean conflict incidence is

about 15 percent. Standard errors two-way clustered at the district- and year-month-level.
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gitude by latitude grid cells. Then I replace πpm with πgm, where g denotes a

2.5 by 2 longitude by latitude grid cell in (1). These cells are disjoint and cover

all districts of Afghanistan. I find that precipitation still plays no role and that

fewer coefficients are significant at the 5 percent α-level for the temperature

conflict incidence relationship, although some are still significant at the 10 per-

cent α-level. However, the caveat with the grid cell fixed effects is that since I

assign district centroids to grid cells, there are grid cells that cover districts but

not their centroids. This problem does not occur for the province-year-month

fixed effects as provinces are by construction polygons that cover each of its

districts perfectly. I, therefore, prefer results based on the baseline set of fixed

effects.

Controlling for District-Year Fixed Effects.—Climate change adaptation may

be the result of observed or expected extreme weather events. If there is inter-

annual district-level climate change adaptation (e.g., improved water resource

management) that affect opportunity costs to conflict and peace, my baseline

estimators may be subject to omitted variable bias. Though this seems unlikely

to be the case as Afghanistan only recently began to prepare rural communities

for climate change (NEPA, UNEP and WFP, 2016), I here control for this poten-

tial omission by adding district-year fixed effects to my baseline specification.

Figure D.8 reproduce the baseline results under this alternative specification. I

find that the baseline results are by and large robust to the inclusion of district-

year fixed effects.56

Conflict Intensity.—My focus on conflict incidence reflects my interest in ex-

56Note that the fact that the estimates in Figure D.8 are closer to zero compared with the

baseline estimates may be a result of exacerbated attenuation bias if there were no district-

year-level omitted variables in the baseline specification.
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FIGURE D.7. CONFLICT INCIDENCE RESPONSE FUNCTIONS—ALTERNATIVE REGIONAL FIXED

EFFECTS

Notes: These figures show temperature and precipitation response functions in the current

year-month obtained by estimating (1) after replacing province-year-month fixed effects with

year-month-varying 2.5 by 2 longitude-latitude grid cell fixed effects. The number of

observations is 54,526 from a balanced panel of 398 districts and 137 year-months. Mean

conflict incidence is about 15 percent. Standard errors two-way clustered at the district- and

year-month-level.
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B. PRIOR YEAR-MONTH

FIGURE D.8. CONFLICT INCIDENCE RESPONSE FUNCTIONS—CONTROLLING FOR DISTRICT-

YEAR FIXED EFFECTS

Notes: The left and right figure of Panel A (B) plots estimates and 95 percent confidence

bands of the contemporaneous (one year-month lagged) conflict incidence temperature and

precipitation response functions obtained by estimating (1) after adding district-year fixed

effects. The omitted temperature- and precipitation-day bins are [10, 15] ◦C and [0.8, 1) mm.

The number of observations is 54,526 from a balanced panel of 398 districts and 137

year-months. Mean conflict incidence is about 15 percent. Standard errors two-way clustered

at the district- and year-month-level.
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plaining the general presence of conflicts. An alternative definition of violence

is conflict intensity measured as the number of battle-related deaths. If a sig-

nificant relationship between weather and conflict incidence but not between

weather and conflict intensity, or vice verse, is found, this does not imply that

one or the other model does not identify the parameters of interest. However, if

results stand in stark contrast to each other, this may cast doubt on my baseline

result. Furthermore, the relationship between weather and conflict intensity is

in itself interesting.

To estimate the relationship between weather and conflict intensity I fit the

number of battle-related deaths to a Poisson regression model. Specifically, for

the number of battle-related deaths BRDdt in district d year-month t I impose

the following probability density function:

P(BRDdt = n|xdt) = exp
(
µ(−xdt)

)µ(xdt)
n

n!
, n = 0, 1, . . . , (D.3)

where the link function µ(xdt) ≡ E(BRDdt|xdt) provides a parametric form

for the conditional mean of conflict intensity given all covariates xdt:

µ(xdt) = exp

(
1

∑
l=0

(
∑

i
βl

iT
i
d,t−l + ∑

j
γl

jP
j
d,t−l

)
+ δdm + πpt

)
. (D.4)

For this model, 100βl
i (100γl

j) approximate the percentage change in the

conditional mean number of battle-related deaths from exchanging a day in

the omitted temperature-day (precipitation-day) bin to a day with temperature

(precipitation) levels in bin i (j).

Estimating a Poisson regression model is more suitable than a log-linear

model of conflict intensity for three reasons. First, it accounts for the fact that

the number of battle-related deaths is a count variable and easily handles ob-

77



served values of conflict intensity equal to zero.57 Second, even if the Poisson

distributional assumption does not correctly describe the empirical distribu-

tion of the number of battle-related deaths, maximum likelihood estimation

produces unbiased estimates of the coefficients if (D.4) correctly describes the

conditional mean of conflict intensity (Wooldridge, 1997, 1999). Third, the Pois-

son regression model does not suffer from the incidental parameters problem

(Cameron and Trivedi, 2005).

There are however three primary drawbacks to my Poisson regression model.

First, I have to omit district-month-specific yearly trends qdm(y). Second, I

can only account for serial correlation in the error terms by clustering at the

district-level, thereby ignoring spatial correlation. Third, estimation of Pois-

son fixed effects models tend to lead to some loss of data as observations who

do not vary within a group specified by a fixed effect (e.g., a district-month)

are dropped as these do not contribute to maximizing the likelihood (Cameron

and Trivedi, 2005). In any case, I believe that my Poisson model is the best

among sub-optimal solutions to study conflict intensity and treat results from

my Poisson model as highly indicative only.

Figure D.9 show response functions for conflict intensity obtained by esti-

mating (D.3). The estimation method drops observations for which the number

of battle-related deaths is constantly zero within a fixed effects group. Conse-

57This, combined with the fact that the number of observations with zero values on the num-

ber of battle-related deaths is high, explains why I do not estimate a log-linear model as a

robustness check. Some authors (e.g., Dube and Vargas (2013)) handle such a problem by re-

placing the variable with the log of the variable plus a small number ε (e.g., 0.001) to account

for zero values. However, results from replacing BRDdt with log(BRDdt + ε) are highly sen-

sitive to the choice of ε in the case of a high number of observations for which BRDdt is zero.

Indeed, I find that estimates can mechanically change and switch sign when experimentally

varying ε over (0.001, 0.0001).
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quently, a loss of about 55 percent observations occurs. This substantial loss of

data makes these results highly suggestive. Keeping this in mind and evaluat-

ing the results as they are I find that the role of precipitation and temperature

in driving the number of battle-related deaths is barely significant. Also, three

coefficients on contemporaneous and lagged precipitation seem spuriously sig-

nificant as the pattern seem inexplicable. Nonetheless, the model prediction for

contemporaneous temperature is consistent with the baseline results as higher

contemporaneous temperature levels tend to increase the number of battle-

related deaths. The predictions are also quantitatively meaningful, with, e.g.,

a decrease by about 3.9 percent (s.e. about 2.1 percent) in the mean number of

battle-related deaths from contemporaneously exchanging a day with temper-

ature levels between 10 and 15 ◦C to a day with temperature levels between 0

and 5 ◦C.
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B. PRIOR YEAR-MONTH

FIGURE D.9. CONFLICT INTENSITY RESPONSE FUNCTIONS

Notes: The left and right figure of Panel A (B) plots estimates and 95 percent confidence

bands of the contemporaneous (one year-month lagged) conflict intensity temperature and

precipitation response function obtained by estimating (D.3) with link function (D.4). The

omitted temperature- and precipitation-day bins are [10, 15] ◦C and [0.8, 1) mm. The number

of observations is 24,530 from an unbalanced panel of 350 districts and 137 year-months.

Mean number of battle related deaths is about 3.14. Standard errors are clustered at the

district-level.
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E Estimation Method

I estimate my Poisson regression model with the Stata package poi2hdfe by

Paulo Guimarães based on a procedure outlined in Figueiredo, Guimarães

and Woodward (2015). The remaining multidimensional fixed effects regres-

sion models are estimated with a computationally efficient iterative and graph-

theoretic estimation method developed by Correia (2016). The Stata package

reghdfe that implement the estimation method by Correia (2016) allow for,

e.g., two-way clustering and interaction of fixed effects with continuous vari-

ables. More notable is that the reghdfe package automatically drops single-

tons, i.e., fixed effects groups with only one observation. In this thesis, I only

drop singletons for the conflict onset and ending model in Section 5.2. The

reason is that maintaining singletons can overstate statistical significance (Cor-

reia, 2015). Though this may seem to be a non-optimal solution as we lose some

information, there is currently no general solution on how to treat singletons.
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